べっこう色の記録

かつては日記でしたが、現在は数学のことを多く書いています

2015-07-01から1ヶ月間の記事一覧

開集合の被覆

の開集合を可算個の開球体で被覆する話である.

差集合について

全体集合の部分集合をとする. このとき,差集合を次で定義する..差集合の集合算を考えたい.まず大切なこととして,であることは押えておく.命題1. .(証明) を示す. を言い換えると,かつかつである. とくに「かつ」は「かつ」である. 言い換え…

自然対数の積分表示

高校数学3ではじめてこの積分を習う.つまり,右辺を左辺で定義することもできるわけだ. 有名な対数の性質も左辺も証明できよう.例. .(解) について,という置換をおこなう. かつとなる. つまり.(終)

任意のεについて

高校ではまったく出てこないが重要な論法がある.命題. が定数で,任意のに対して, が成り立つならば である.□右辺にいくらでも小さくできる項が含まれていると,その項を取り除いても等号付きで不等号が成立する. 証明は背理法による.(証明) 背理法…

不等号のこと

不等号が学校ではじめて登場するのは小学校2年生なのだそうだ. もちろん私は初登場した日のことはまったく覚えていない.しかも「不等号」という名前を出さずに記号を使って数の大小を表現するに留まるのだそうだ. 小学校2年生では少し難しい単語だと判…

連続関数と可測関数

連続関数と可測関数の合成がまた可測関数になることを示す. 定理. 関数 を連続とする. または有限な値を持つ実数値可測関数とする. このとき,も可測関数である. 可測であること(証明) の開基として,開区間をとることができる. は連続であるからと…

「ほとんどすべて」a.e.

定義.(ほとんどすべて a.e.) に対する命題が,ある零集合の点を除いては成立するとき 命題はほとんどすべて(almost everywhere)のに対して成り立つ,といい a.e. と表す.□ 注意. 考える集合が明らかな場合,は省略可能である.□稠密でかつ零集合であ…