べっこう色の記録

かつては日記でしたが、現在は数学のことを多く書いています

リーマン積分からルベーグ積分への転換は「たて」から「よこ」へにある

このルベーグ積分の話を始めた2年以上前の記事を見ると次のようなことが書いてある.

「すべての話の始まりは,様々な図形の面積・体積を測るにはどうすればいいかということだ.
素朴に考えると,長方形の面積・体積を定義し,
他の図形は長方形の近似で考えるのがいいと思われる.」

長方形の面積は小学校から(たて)×(よこ)で計算してきた.

リーマン積分の場合,定義域を小区間に分割し
(小区間の幅)×(小区間の任意の元の関数の値)で各小区間における長方形の面積を計算し,
たし合わせることによってリーマン和を計算した.
区間の幅の分割の仕方を初めに決定するので,
積分そのものの「難しさ」はどうしても関数の値にゆだねられることになる.
長方形の面積の話で言えば,(たて)に難しさを押し付けているのである.

ルベーグ積分ルベーグ測度を考えることで,定義域を複雑な図形へ分けることも許す.
こうすることで積分そのものの「難しさ」を関数の値からルベーグ測度に譲り渡している.
つまり(たて)から(よこ)へと視点を移しているのである.

(よこ)というのは関数にとっては関数の値のことである.
そこでまず定義域を分割したとき,その分割のひとつひとつにおいて定数である関数を考えると話が早い.
このような関数を単関数という.
そして単関数で近似できる関数を考えればよい.
実は近似可能な関数は可測関数なのである.あの定義はそういう意味もあるのだ.